2025년 2월 12일(수)-14일(금) | 강원도 하이원리조트 ## Future Normal in Semiconductor 2025-02-13(목), 15:50-17:20 좌장: 추후업데이트 예정 ## D. Thin Film Process Technology 분과 ## [TC3-D] Emerging Devices - III | TC3-D-1
15:50-16:05 | Atomic-Layer-Deposited Lithium Titanate-based Artificial Synaptic Devices for Neuromorphic Computing Min Sub Kim, Hye Rim Kim, and Tae Joo Park Department of Materials Science and Chemical Engineering, Hanyang University | |------------------------|--| | TC3-D-2
16:05-16:20 | Synergistic Learning and Forgetting Effects for Optical and Electrical Stimulation in TiO ₂ -based Dual-Gate Dielectric Synaptic Transistors Youngbin Yoon ¹ , Jaehee Lee ^{1,2} , and Jung Wook Lim ^{1,2} ¹ ETRI, ² UST | | TC3-D-3
16:20-16:35 | Implementation of Vertical-Channel Synapse Transistors Using an IGZO Active Layer with a Channel Length of 40 nm via HfO ₂ Spacer Layer Nayoung Jang ¹ , Young-Ha Kwon ² , Nak-Jin Seong ² , Kyu-Jeong Choi ² , and Sung-Min Yoon ¹ ¹ Kyung Hee University, ² NCD Co., Ltd. | | TC3-D-4
16:35-16:50 | Light-Controlled Multi-Wavelength Behavior Synapse Transistor
Seungme Kang and Hocheon Yoo
Gachon University | | TC3-D-5
16:50-17:05 | Enhancement of Synaptic Characteristics and Spatiotemporal Processing in Electrolytic-Gated Synapse Transistors via a Gate Offset Geometry Hyunsik Woo and Sung-Min Yoon Kyung Hee University | | TC3-D-6
17:05-17:20 | All Transition Metal Dichalcogenides Based Wafer Scale 1T1R Array Via Crystallinity Engineering. Hyunbin Choi ¹ , Hyunho Seok ² , Sihoon Son ² , Jinhyoung Lee ³ , and Taesung Kim ^{1,2,3} ¹ Department of Semiconductor Convergence Engineering, Sungkyunkwan University, ² SKKU Advance Institute of Nano Technology, ³ Department of Mechanical Engineering, Sungkyunkwan University |